Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantification of lateral heterogeneity in carbohydrate permeability of isolated plant leaf cuticles.

Identifieur interne : 002D42 ( Main/Exploration ); précédent : 002D41; suivant : 002D43

Quantification of lateral heterogeneity in carbohydrate permeability of isolated plant leaf cuticles.

Auteurs : Mitja N P. Remus-Emsermann [Pays-Bas] ; Sheron De Oliveira ; Lukas Schreiber ; Johan H J. Leveau

Source :

RBID : pubmed:22046169

Abstract

In phyllosphere microbiology, the distribution of resources available to bacterial colonizers of leaf surfaces is generally understood to be very heterogeneous. However, there is little quantitative understanding of the mechanisms that underlie this heterogeneity. Here, we tested the hypothesis that different parts of the cuticle vary in the degree to which they allow diffusion of the leaf sugar fructose to the surface. To this end, individual, isolated cuticles of poplar leaves were each analyzed for two properties: (1) the permeability for fructose, which involved measurement of diffused fructose by gas chromatography and flame ionization detection (GC-FID), and (2) the number and size of fructose-permeable sites on the cuticle, which was achieved using a green-fluorescent protein (GFP)-based bacterial bioreporter for fructose. Bulk flux measurements revealed an average permeance P of 3.39 × 10(-9) ms(-1), while the bioreporter showed that most of the leaching fructose was clustered to sites around the base of shed trichomes, which accounted for only 0.37% of the surface of the cuticles under study. Combined, the GC-FID and GFP measurements allowed us to calculate an apparent rate of fructose diffusion at these preferential leaching sites of 9.15 × 10(-7) ms(-1). To the best of our knowledge, this study represents the first successful attempt to quantify cuticle permeability at a resolution that is most relevant to bacterial colonizers of plant leaves. The estimates for P at different spatial scales will be useful for future models that aim to explain and predict temporal and spatial patterns of bacterial colonization of plant foliage based on lateral heterogeneity in sugar permeability of the leaf cuticle.

DOI: 10.3389/fmicb.2011.00197
PubMed: 22046169
PubMed Central: PMC3202220


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantification of lateral heterogeneity in carbohydrate permeability of isolated plant leaf cuticles.</title>
<author>
<name sortKey="Remus Emsermann, Mitja N P" sort="Remus Emsermann, Mitja N P" uniqKey="Remus Emsermann M" first="Mitja N P" last="Remus-Emsermann">Mitja N P. Remus-Emsermann</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen</wicri:regionArea>
<wicri:noRegion>Netherlands Institute of Ecology (NIOO-KNAW) Wageningen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="De Oliveira, Sheron" sort="De Oliveira, Sheron" uniqKey="De Oliveira S" first="Sheron" last="De Oliveira">Sheron De Oliveira</name>
</author>
<author>
<name sortKey="Schreiber, Lukas" sort="Schreiber, Lukas" uniqKey="Schreiber L" first="Lukas" last="Schreiber">Lukas Schreiber</name>
</author>
<author>
<name sortKey="Leveau, Johan H J" sort="Leveau, Johan H J" uniqKey="Leveau J" first="Johan H J" last="Leveau">Johan H J. Leveau</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:22046169</idno>
<idno type="pmid">22046169</idno>
<idno type="doi">10.3389/fmicb.2011.00197</idno>
<idno type="pmc">PMC3202220</idno>
<idno type="wicri:Area/Main/Corpus">002C42</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002C42</idno>
<idno type="wicri:Area/Main/Curation">002C42</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002C42</idno>
<idno type="wicri:Area/Main/Exploration">002C42</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Quantification of lateral heterogeneity in carbohydrate permeability of isolated plant leaf cuticles.</title>
<author>
<name sortKey="Remus Emsermann, Mitja N P" sort="Remus Emsermann, Mitja N P" uniqKey="Remus Emsermann M" first="Mitja N P" last="Remus-Emsermann">Mitja N P. Remus-Emsermann</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen</wicri:regionArea>
<wicri:noRegion>Netherlands Institute of Ecology (NIOO-KNAW) Wageningen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="De Oliveira, Sheron" sort="De Oliveira, Sheron" uniqKey="De Oliveira S" first="Sheron" last="De Oliveira">Sheron De Oliveira</name>
</author>
<author>
<name sortKey="Schreiber, Lukas" sort="Schreiber, Lukas" uniqKey="Schreiber L" first="Lukas" last="Schreiber">Lukas Schreiber</name>
</author>
<author>
<name sortKey="Leveau, Johan H J" sort="Leveau, Johan H J" uniqKey="Leveau J" first="Johan H J" last="Leveau">Johan H J. Leveau</name>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="eISSN">1664-302X</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In phyllosphere microbiology, the distribution of resources available to bacterial colonizers of leaf surfaces is generally understood to be very heterogeneous. However, there is little quantitative understanding of the mechanisms that underlie this heterogeneity. Here, we tested the hypothesis that different parts of the cuticle vary in the degree to which they allow diffusion of the leaf sugar fructose to the surface. To this end, individual, isolated cuticles of poplar leaves were each analyzed for two properties: (1) the permeability for fructose, which involved measurement of diffused fructose by gas chromatography and flame ionization detection (GC-FID), and (2) the number and size of fructose-permeable sites on the cuticle, which was achieved using a green-fluorescent protein (GFP)-based bacterial bioreporter for fructose. Bulk flux measurements revealed an average permeance P of 3.39 × 10(-9) ms(-1), while the bioreporter showed that most of the leaching fructose was clustered to sites around the base of shed trichomes, which accounted for only 0.37% of the surface of the cuticles under study. Combined, the GC-FID and GFP measurements allowed us to calculate an apparent rate of fructose diffusion at these preferential leaching sites of 9.15 × 10(-7) ms(-1). To the best of our knowledge, this study represents the first successful attempt to quantify cuticle permeability at a resolution that is most relevant to bacterial colonizers of plant leaves. The estimates for P at different spatial scales will be useful for future models that aim to explain and predict temporal and spatial patterns of bacterial colonization of plant foliage based on lateral heterogeneity in sugar permeability of the leaf cuticle.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">22046169</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>11</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1664-302X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>2</Volume>
<PubDate>
<Year>2011</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Quantification of lateral heterogeneity in carbohydrate permeability of isolated plant leaf cuticles.</ArticleTitle>
<Pagination>
<MedlinePgn>197</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2011.00197</ELocationID>
<Abstract>
<AbstractText>In phyllosphere microbiology, the distribution of resources available to bacterial colonizers of leaf surfaces is generally understood to be very heterogeneous. However, there is little quantitative understanding of the mechanisms that underlie this heterogeneity. Here, we tested the hypothesis that different parts of the cuticle vary in the degree to which they allow diffusion of the leaf sugar fructose to the surface. To this end, individual, isolated cuticles of poplar leaves were each analyzed for two properties: (1) the permeability for fructose, which involved measurement of diffused fructose by gas chromatography and flame ionization detection (GC-FID), and (2) the number and size of fructose-permeable sites on the cuticle, which was achieved using a green-fluorescent protein (GFP)-based bacterial bioreporter for fructose. Bulk flux measurements revealed an average permeance P of 3.39 × 10(-9) ms(-1), while the bioreporter showed that most of the leaching fructose was clustered to sites around the base of shed trichomes, which accounted for only 0.37% of the surface of the cuticles under study. Combined, the GC-FID and GFP measurements allowed us to calculate an apparent rate of fructose diffusion at these preferential leaching sites of 9.15 × 10(-7) ms(-1). To the best of our knowledge, this study represents the first successful attempt to quantify cuticle permeability at a resolution that is most relevant to bacterial colonizers of plant leaves. The estimates for P at different spatial scales will be useful for future models that aim to explain and predict temporal and spatial patterns of bacterial colonization of plant foliage based on lateral heterogeneity in sugar permeability of the leaf cuticle.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Remus-Emsermann</LastName>
<ForeName>Mitja N P</ForeName>
<Initials>MN</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de Oliveira</LastName>
<ForeName>Sheron</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schreiber</LastName>
<ForeName>Lukas</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Leveau</LastName>
<ForeName>Johan H J</ForeName>
<Initials>JH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>09</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Erwinia herbicola</Keyword>
<Keyword MajorTopicYN="N">Populus x canescens</Keyword>
<Keyword MajorTopicYN="N">aqueous pores</Keyword>
<Keyword MajorTopicYN="N">fructose</Keyword>
<Keyword MajorTopicYN="N">gas chromatography</Keyword>
<Keyword MajorTopicYN="N">phyllosphere</Keyword>
<Keyword MajorTopicYN="N">poplar</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>06</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>09</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>11</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>11</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>11</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22046169</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2011.00197</ArticleId>
<ArticleId IdType="pmc">PMC3202220</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Planta. 2004 Jul;219(3):405-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15024648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Jan;223(2):283-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16151845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 Oct;52(363):2023-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11559738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Nov;62(11):4121-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8900003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2000 Sep;38:145-180</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11701840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Aug;156(4):2098-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21685175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2000 Jan;66(1):369-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10618250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3454-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11248099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Jan;70(1):346-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14711662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2010 Feb;4(2):215-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19865185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1980 May 30;208(4447):990-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17779010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2005 Jun;95(7):1069-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15797897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1976 Jan;128(2):113-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24430686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3446-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11248098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Jul;221(5):648-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15700185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Apr 19;277(16):e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11953443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2011 Mar;13(3):792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21091864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 Mar;61(3):1073-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16534957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1995 Jun;61(6):2151-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16535040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Aug;126(4):1725-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11500570</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="De Oliveira, Sheron" sort="De Oliveira, Sheron" uniqKey="De Oliveira S" first="Sheron" last="De Oliveira">Sheron De Oliveira</name>
<name sortKey="Leveau, Johan H J" sort="Leveau, Johan H J" uniqKey="Leveau J" first="Johan H J" last="Leveau">Johan H J. Leveau</name>
<name sortKey="Schreiber, Lukas" sort="Schreiber, Lukas" uniqKey="Schreiber L" first="Lukas" last="Schreiber">Lukas Schreiber</name>
</noCountry>
<country name="Pays-Bas">
<noRegion>
<name sortKey="Remus Emsermann, Mitja N P" sort="Remus Emsermann, Mitja N P" uniqKey="Remus Emsermann M" first="Mitja N P" last="Remus-Emsermann">Mitja N P. Remus-Emsermann</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D42 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002D42 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22046169
   |texte=   Quantification of lateral heterogeneity in carbohydrate permeability of isolated plant leaf cuticles.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22046169" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020